Lets talk about picking the right anchor bolts when youre trying to beef up a structure against those pesky uplift forces. Its not just about grabbing the biggest, shiniest bolt you can find. The soil beneath your home is secretly plotting either stability or chaos depending on its composition and moisture levels foundation stability check Chicagoland health. Youve got to think about the whole picture, the environment the bolt will be living in, and exactly how much force it needs to withstand.
Think of it like choosing shoes. You wouldnt wear flip-flops to climb a mountain, right? Similarly, a standard carbon steel anchor bolt might be fine for a dry, interior application, but itll quickly rust and weaken if its constantly exposed to saltwater spray. Thats where materials like stainless steel come into play. Theyre more expensive, sure, but they offer superior corrosion resistance, meaning your anchor bolt will stay strong for the long haul.
Beyond corrosion, you also need to consider the strength of the material. Different grades of steel have different yield strengths and tensile strengths. These numbers tell you how much stress the bolt can handle before it starts to deform or, worse, break. A higher strength material is generally needed for applications with high uplift forces, like anchoring equipment to a foundation in a hurricane-prone area.
And dont forget about the base material youre anchoring into! Is it concrete, masonry, or steel? The anchor bolt material needs to be compatible with the base material to ensure a strong, reliable connection. Dissimilar metals can sometimes react with each other, causing corrosion or weakening the connection.
Ultimately, selecting the right anchor bolt material is a balancing act. You need to consider the cost, the environment, the required strength, and the compatibility with the base material. Its worth taking the time to do your research and consult with an engineer or experienced contractor. Getting it right the first time can save you a lot of headaches (and money) down the road. Choosing the right material is like choosing the right tool for the job; it makes all the difference in ensuring a secure and lasting upgrade.
Okay, so youve got anchor bolts, and theyre supposed to be keeping things grounded, right? But these pesky uplift forces are trying to yank stuff up. Thats where we need to get smart about installation. Its not just about slapping a bolt in and hoping for the best. Were talking about upgrading your anchor game for serious resistance.
Think about it like this: are the bolts properly sized for the load? Often, just going bigger isnt the whole answer. Its about the right bolt for the job. And are they embedded deeply enough? The deeper the anchor, the more concrete it has to grip. Thats basic physics.
Then theres the concrete itself. Is it strong enough? Crumbly, old concrete isnt going to hold anything securely, no matter how fancy your anchor is. You might need to reinforce the concrete around the anchor point before even thinking about the bolt.
And don't forget the details! Are you using the right epoxy or grout for the type of anchor and the concrete? A good chemical anchor, properly installed, can make a huge difference. Were talking about creating a super strong bond. And are you following the manufacturers instructions to the letter? Those instructions aren't just suggestions; theyre the recipe for success.
Finally, are you tensioning the bolts correctly? Over-tightening can actually weaken the connection, while under-tightening leaves you vulnerable. It's a delicate balance that requires careful attention and the right tools.
Upgrading anchor bolts for uplift resistance isnt just a quick fix. Its a whole system approach. Its about understanding the forces at play, selecting the right materials, and, crucially, paying attention to the installation techniques that make all the difference. Get that right, and you can keep things firmly planted, no matter what those uplift forces throw at you.
Anchor bolt upgrades to resist uplift forces are crucial for the structural integrity of many buildings and infrastructure elements. But simply installing new, beefier bolts isnt enough. We need to be absolutely certain theyll perform as intended. Thats where rigorous testing and verification come in. Think of it like this: you wouldnt trust a bridge to hold heavy traffic without first testing its load-bearing capacity, right? Anchor bolts are similar – they need to be put through their paces.
Testing can involve a variety of methods, from simple pull-out tests on individual bolts to more complex, simulated uplift scenarios that mimic real-world conditions. These tests help us determine the bolts actual tensile strength, its resistance to slippage, and how it behaves under sustained or cyclic loading. Is the bolt deforming excessively? Is the surrounding concrete cracking? These are critical observations that inform our understanding of the upgrades effectiveness.
Verification, on the other hand, is about ensuring that the entire upgrade process – from material selection to installation – adheres to established standards and best practices. This might involve detailed inspections of the bolt installation, checking for proper torque, confirming the correct embedment depth, and verifying the quality of the grout or epoxy used. Its about having a system of checks and balances to minimize the risk of errors.
Ultimately, testing and verification provide the confidence that the anchor bolt upgrades will actually do their job when those uplift forces come calling. Theyre not just a box to tick; theyre a vital part of ensuring the safety and longevity of the structure. Without them, were essentially gambling with the buildings stability, and thats a risk no one can afford to take.
When it comes to the maintenance and longevity of upgraded anchor bolts designed to resist uplift forces, several key considerations come into play. These upgraded anchor bolts are essential in structures where resistance against upward forces is critical, such as in areas prone to high winds or seismic activity. Ensuring their durability and effectiveness over time requires a proactive approach.
First, regular inspection is paramount. This involves visually checking for signs of corrosion, cracks, or any deformation in the bolts. Since these bolts are often embedded in concrete or other materials, non-destructive testing methods like ultrasonic testing can be employed to assess the integrity of the bolt within its anchorage without causing damage. Its advisable to schedule these inspections annually or more frequently if the environment is particularly harsh.
Maintenance also includes addressing any issues found during inspections promptly. For instance, if rust is detected, it should be removed by mechanical means or chemical treatment before applying a protective coating that suits the environmental conditions—be it a marine-grade paint for coastal areas or a heavy-duty epoxy for industrial settings. Lubrication might also be necessary for certain types of mechanical anchors to ensure they remain functional.
The longevity of these upgraded anchor bolts is significantly influenced by the quality of materials used in their construction and the initial installation process. High-strength steel with appropriate galvanization or other corrosion-resistant treatments extends lifespan considerably. Moreover, proper installation practices, including correct embedment depth and securing techniques like torque specifications, are crucial as they prevent premature failure due to improper load distribution.
Environmental factors play a significant role too. In corrosive environments, selecting bolts with enhanced protective coatings or considering stainless steel options can mitigate degradation over time. Furthermore, designing drainage systems around the base of structures can reduce moisture accumulation which is often a catalyst for corrosion.
Lastly, documentation and record-keeping form an integral part of maintenance strategy. Keeping detailed records of each inspection and maintenance activity provides a historical overview that can predict potential failure points through pattern recognition over time. This information is invaluable for planning future upgrades or replacements before catastrophic failures occur.
In conclusion, maintaining upgraded anchor bolts involves a combination of vigilant inspection regimes, timely corrective actions, thoughtful material selection based on environmental exposure, proper installation practices, and meticulous record-keeping. By adhering to these principles, the structural integrity provided by these vital components against uplift forces can be preserved for many years, ensuring safety and reliability in challenging conditions.
A pile or piling is a vertical structural element of a deep foundation, driven or drilled deep into the ground at the building site. A deep foundation is a type of foundation that transfers building loads to the earth farther down from the surface than a shallow foundation does to a subsurface layer or a range of depths.
There are many reasons that a geotechnical engineer would recommend a deep foundation over a shallow foundation, such as for a skyscraper. Some of the common reasons are very large design loads, a poor soil at shallow depth, or site constraints like property lines. There are different terms used to describe different types of deep foundations including the pile (which is analogous to a pole), the pier (which is analogous to a column), drilled shafts, and caissons. Piles are generally driven into the ground in situ; other deep foundations are typically put in place using excavation and drilling. The naming conventions may vary between engineering disciplines and firms. Deep foundations can be made out of timber, steel, reinforced concrete or prestressed concrete.
Prefabricated piles are driven into the ground using a pile driver. Driven piles are constructed of wood, reinforced concrete, or steel. Wooden piles are made from the trunks of tall trees. Concrete piles are available in square, octagonal, and round cross-sections (like Franki piles). They are reinforced with rebar and are often prestressed. Steel piles are either pipe piles or some sort of beam section (like an H-pile). Historically, wood piles used splices to join multiple segments end-to-end when the driven depth required was too long for a single pile; today, splicing is common with steel piles, though concrete piles can be spliced with mechanical and other means. Driving piles, as opposed to drilling shafts, is advantageous because the soil displaced by driving the piles compresses the surrounding soil, causing greater friction against the sides of the piles, thus increasing their load-bearing capacity. Driven piles are also considered to be "tested" for weight-bearing ability because of their method of installation.[citation needed]
Foundations relying on driven piles often have groups of piles connected by a pile cap (a large concrete block into which the heads of the piles are embedded) to distribute loads that are greater than one pile can bear. Pile caps and isolated piles are typically connected with grade beams to tie the foundation elements together; lighter structural elements bear on the grade beams, while heavier elements bear directly on the pile cap.[citation needed]
A monopile foundation utilizes a single, generally large-diameter, foundation structural element to support all the loads (weight, wind, etc.) of a large above-surface structure.
A large number of monopile foundations[1] have been utilized in recent years for economically constructing fixed-bottom offshore wind farms in shallow-water subsea locations.[2] For example, the Horns Rev wind farm in the North Sea west of Denmark utilizes 80 large monopiles of 4 metres diameter sunk 25 meters deep into the seabed,[3] while the Lynn and Inner Dowsing Wind Farm off the coast of England went online in 2008 with over 100 turbines, each mounted on a 4.7-metre-diameter monopile foundation in ocean depths up to 18 metres.[4]
The typical construction process for a wind turbine subsea monopile foundation in sand includes driving a large hollow steel pile, of some 4 m in diameter with approximately 50mm thick walls, some 25 m deep into the seabed, through a 0.5 m layer of larger stone and gravel to minimize erosion around the pile. A transition piece (complete with pre-installed features such as boat-landing arrangement, cathodic protection, cable ducts for sub-marine cables, turbine tower flange, etc.) is attached to the driven pile, and the sand and water are removed from the centre of the pile and replaced with concrete. An additional layer of even larger stone, up to 0.5 m diameter, is applied to the surface of the seabed for longer-term erosion protection.[2]
Also called caissons, drilled shafts, drilled piers, cast-in-drilled-hole piles (CIDH piles) or cast-in-situ piles, a borehole is drilled into the ground, then concrete (and often some sort of reinforcing) is placed into the borehole to form the pile. Rotary boring techniques allow larger diameter piles than any other piling method and permit pile construction through particularly dense or hard strata. Construction methods depend on the geology of the site; in particular, whether boring is to be undertaken in 'dry' ground conditions or through water-saturated strata. Casing is often used when the sides of the borehole are likely to slough off before concrete is poured.
For end-bearing piles, drilling continues until the borehole has extended a sufficient depth (socketing) into a sufficiently strong layer. Depending on site geology, this can be a rock layer, or hardpan, or other dense, strong layers. Both the diameter of the pile and the depth of the pile are highly specific to the ground conditions, loading conditions, and nature of the project. Pile depths may vary substantially across a project if the bearing layer is not level. Drilled piles can be tested using a variety of methods to verify the pile integrity during installation.
Under-reamed piles have mechanically formed enlarged bases that are as much as 6 m in diameter.[citation needed] The form is that of an inverted cone and can only be formed in stable soils or rocks. The larger base diameter allows greater bearing capacity than a straight-shaft pile.
These piles are suited for expansive soils which are often subjected to seasonal moisture variations, or for loose or soft strata. They are used in normal ground condition also where economics are favorable. [5][full citation needed]
Under reamed piles foundation is used for the following soils:-
1. Under reamed piles are used in black cotton soil: This type of soil expands when it comes in contact with water and contraction occurs when water is removed. So that cracks appear in the construction done on such clay. An under reamed pile is used in the base to remove this defect.
2. Under reamed piles are used in low bearing capacity Outdated soil (filled soil)
3.Under reamed piles are used in sandy soil when water table is high.
4. Under reamed piles are used, Where lifting forces appear at the base of foundation.
An augercast pile, often known as a continuous flight augering (CFA) pile, is formed by drilling into the ground with a hollow stemmed continuous flight auger to the required depth or degree of resistance. No casing is required. A cement grout mix is then pumped down the stem of the auger. While the cement grout is pumped, the auger is slowly withdrawn, conveying the soil upward along the flights. A shaft of fluid cement grout is formed to ground level. Reinforcement can be installed. Recent innovations in addition to stringent quality control allows reinforcing cages to be placed up to the full length of a pile when required.[citation needed]
Augercast piles cause minimal disturbance and are often used for noise-sensitive and environmentally-sensitive sites. Augercast piles are not generally suited for use in contaminated soils, because of expensive waste disposal costs. In cases such as these, a displacement pile (like Olivier piles) may provide the cost efficiency of an augercast pile and minimal environmental impact. In ground containing obstructions or cobbles and boulders, augercast piles are less suitable as refusal above the design pile tip elevation may be encountered.[citation needed]
Small Sectional Flight Auger piling rigs can also be used for piled raft foundations. These produce the same type of pile as a Continuous Flight Auger rig but using smaller, more lightweight equipment. This piling method is fast, cost-effective and suitable for the majority of ground types.[5][6]
In drilled pier foundations, the piers can be connected with grade beams on which the structure sits, sometimes with heavy column loads bearing directly on the piers. In some residential construction, the piers are extended above the ground level, and wood beams bearing on the piers are used to support the structure. This type of foundation results in a crawl space underneath the building in which wiring and duct work can be laid during construction or re-modelling.[7]
In jet piling high pressure water is used to set piles.[8] High pressure water cuts through soil with a high-pressure jet flow and allows the pile to be fitted.[9] One advantage of Jet Piling: the water jet lubricates the pile and softens the ground.[10] The method is in use in Norway.[11]
Micropiles are small diameter, generally less than 300mm diameter, elements that are drilled and grouted in place. They typically get their capacity from skin friction along the sides of the element, but can be end bearing in hard rock as well. Micropiles are usually heavily reinforced with steel comprising more than 40% of their cross section. They can be used as direct structural support or as ground reinforcement elements. Due to their relatively high cost and the type of equipment used to install these elements, they are often used where access restrictions and or very difficult ground conditions (cobbles and boulders, construction debris, karst, environmental sensitivity) exists or to retrofit existing structures. Occasionally, in difficult ground, they are used for new construction foundation elements. Typical applications include underpinning, bridge, transmission tower and slope stabilization projects.[6][12][13][14]
The use of a tripod rig to install piles is one of the more traditional ways of forming piles. Although unit costs are generally higher than with most other forms of piling,[citation needed] it has several advantages which have ensured its continued use through to the present day. The tripod system is easy and inexpensive to bring to site, making it ideal for jobs with a small number of piles.[clarification needed]
Sheet piling is a form of driven piling using thin interlocking sheets of steel to obtain a continuous barrier in the ground. The main application of sheet piles is in retaining walls and cofferdams erected to enable permanent works to proceed. Normally, vibrating hammer, t-crane and crawle drilling are used to establish sheet piles.[citation needed]
Soldier piles, also known as king piles or Berlin walls, are constructed of steel H sections spaced about 2 to 3 m apart and are driven or drilled prior to excavation. As the excavation proceeds, horizontal timber sheeting (lagging) is inserted behind the H pile flanges.
The horizontal earth pressures are concentrated on the soldier piles because of their relative rigidity compared to the lagging. Soil movement and subsidence is minimized by installing the lagging immediately after excavation to avoid soil loss.[citation needed] Lagging can be constructed by timber, precast concrete, shotcrete and steel plates depending on spacing of the soldier piles and the type of soils.
Soldier piles are most suitable in conditions where well constructed walls will not result in subsidence such as over-consolidated clays, soils above the water table if they have some cohesion, and free draining soils which can be effectively dewatered, like sands.[citation needed]
Unsuitable soils include soft clays and weak running soils that allow large movements such as loose sands. It is also not possible to extend the wall beyond the bottom of the excavation, and dewatering is often required.[citation needed]
Screw piles, also called helical piers and screw foundations, have been used as foundations since the mid 19th century in screw-pile lighthouses.[citation needed] Screw piles are galvanized iron pipe with helical fins that are turned into the ground by machines to the required depth. The screw distributes the load to the soil and is sized accordingly.
Suction piles are used underwater to secure floating platforms. Tubular piles are driven into the seabed (or more commonly dropped a few metres into a soft seabed) and then a pump sucks water out at the top of the tubular, pulling the pile further down.
The proportions of the pile (diameter to height) are dependent upon the soil type. Sand is difficult to penetrate but provides good holding capacity, so the height may be as short as half the diameter. Clays and muds are easy to penetrate but provide poor holding capacity, so the height may be as much as eight times the diameter. The open nature of gravel means that water would flow through the ground during installation, causing 'piping' flow (where water boils up through weaker paths through the soil). Therefore, suction piles cannot be used in gravel seabeds.[citation needed]
In high latitudes where the ground is continuously frozen, adfreeze piles are used as the primary structural foundation method.
Adfreeze piles derive their strength from the bond of the frozen ground around them to the surface of the pile.[citation needed]
Adfreeze pile foundations are particularly sensitive in conditions which cause the permafrost to melt. If a building is constructed improperly then it can melt the ground below, resulting in a failure of the foundation system.[citation needed]
Vibrated stone columns are a ground improvement technique where columns of coarse aggregate are placed in soils with poor drainage or bearing capacity to improve the soils.[citation needed]
Specific to marine structures, hospital piles (also known as gallow piles) are built to provide temporary support to marine structure components during refurbishment works. For example, when removing a river pontoon, the brow will be attached to hospital pile to support it. They are normal piles, usually with a chain or hook attachment.[citation needed]
Piled walls can be drivene or bored. They provide special advantages where available working space dictates and open cut excavation not feasible. Both methods offer technically effective and offer a cost efficient temporary or permanent means of retaining the sides of bulk excavations even in water bearing strata. When used in permanent works, these walls can be designed to resist vertical loads in addition lateral load from retaining soil. Construction of both methods is the same as for foundation bearing piles. Contiguous walls are constructed with small gaps between adjacent piles. The spacing of the piles can be varied to provide suitable bending stiffness.
Secant pile walls are constructed such that space is left between alternate 'female' piles for the subsequent construction of 'male' piles.[clarification needed] Construction of 'male' piles involves boring through the concrete in the 'female' piles hole in order to key 'male' piles between. The male pile is the one where steel reinforcement cages are installed, though in some cases the female piles are also reinforced.[citation needed]
Secant piled walls can either be true hard/hard, hard/intermediate (firm), or hard/soft, depending on design requirements. Hard refers to structural concrete and firm or soft is usually a weaker grout mix containing bentonite.[citation needed] All types of wall can be constructed as free standing cantilevers, or may be propped if space and sub-structure design permit. Where party wall agreements allow, ground anchors can be used as tie backs.
A slurry wall is a barrier built under ground using a mix of bentonite and water to prevent the flow of groundwater. A trench that would collapse due to the hydraulic pressure in the surrounding soil does not collapse as the slurry balances the hydraulic pressure.
These are essentially variations of in situ reinforcements in the form of piles (as mentioned above), blocks or larger volumes.
Cement, lime/quick lime, flyash, sludge and/or other binders (sometimes called stabilizer) are mixed into the soil to increase bearing capacity. The result is not as solid as concrete, but should be seen as an improvement of the bearing capacity of the original soil.
The technique is most often applied on clays or organic soils like peat. The mixing can be carried out by pumping the binder into the soil whilst mixing it with a device normally mounted on an excavator or by excavating the masses, mixing them separately with the binders and refilling them in the desired area. The technique can also be used on lightly contaminated masses as a means of binding contaminants, as opposed to excavating them and transporting to landfill or processing.
As the name implies, timber piles are made of wood.
Historically, timber has been a plentiful, locally available resource in many areas. Today, timber piles are still more affordable than concrete or steel. Compared to other types of piles (steel or concrete), and depending on the source/type of timber, timber piles may not be suitable for heavier loads.
A main consideration regarding timber piles is that they should be protected from rotting above groundwater level. Timber will last for a long time below the groundwater level. For timber to rot, two elements are needed: water and oxygen. Below the groundwater level, dissolved oxygen is lacking even though there is ample water. Hence, timber tends to last for a long time below the groundwater level. An example is Venice, which has had timber pilings since its beginning; even most of the oldest piles are still in use. In 1648, the Royal Palace of Amsterdam was constructed on 13,659 timber piles that still survive today since they were below groundwater level. Timber that is to be used above the water table can be protected from decay and insects by numerous forms of wood preservation using pressure treatment (alkaline copper quaternary (ACQ), chromated copper arsenate (CCA), creosote, etc.).
Splicing timber piles is still quite common and is the easiest of all the piling materials to splice. The normal method for splicing is by driving the leader pile first, driving a steel tube (normally 60–100 cm long, with an internal diameter no smaller than the minimum toe diameter) half its length onto the end of the leader pile. The follower pile is then simply slotted into the other end of the tube and driving continues. The steel tube is simply there to ensure that the two pieces follow each other during driving. If uplift capacity is required, the splice can incorporate bolts, coach screws, spikes or the like to give it the necessary capacity.
Cast iron may be used for piling. These may be ductile.[citation needed]
Pipe piles are a type of steel driven pile foundation and are a good candidate for inclined (battered) piles.
Pipe piles can be driven either open end or closed end. When driven open end, soil is allowed to enter the bottom of the pipe or tube. If an empty pipe is required, a jet of water or an auger can be used to remove the soil inside following driving. Closed end pipe piles are constructed by covering the bottom of the pile with a steel plate or cast steel shoe.
In some cases, pipe piles are filled with concrete to provide additional moment capacity or corrosion resistance. In the United Kingdom, this is generally not done in order to reduce the cost.[citation needed] In these cases corrosion protection is provided by allowing for a sacrificial thickness of steel or by adopting a higher grade of steel. If a concrete filled pipe pile is corroded, most of the load carrying capacity of the pile will remain intact due to the concrete, while it will be lost in an empty pipe pile. The structural capacity of pipe piles is primarily calculated based on steel strength and concrete strength (if filled). An allowance is made for corrosion depending on the site conditions and local building codes. Steel pipe piles can either be new steel manufactured specifically for the piling industry or reclaimed steel tubular casing previously used for other purposes such as oil and gas exploration.
H-Piles are structural beams that are driven in the ground for deep foundation application. They can be easily cut off or joined by welding or mechanical drive-fit splicers. If the pile is driven into a soil with low pH value, then there is a risk of corrosion, coal-tar epoxy or cathodic protection can be applied to slow or eliminate the corrosion process. It is common to allow for an amount of corrosion in design by simply over dimensioning the cross-sectional area of the steel pile. In this way, the corrosion process can be prolonged up to 50 years.[citation needed]
Concrete piles are typically made with steel reinforcing and prestressing tendons to obtain the tensile strength required, to survive handling and driving, and to provide sufficient bending resistance.
Long piles can be difficult to handle and transport. Pile joints can be used to join two or more short piles to form one long pile. Pile joints can be used with both precast and prestressed concrete piles.
A "composite pile" is a pile made of steel and concrete members that are fastened together, end to end, to form a single pile. It is a combination of different materials or different shaped materials such as pipe and H-beams or steel and concrete.
Construction machinery used to drive piles into the ground:[15]
Construction machinery used to construct replacement piles:[15]
cite journal
|journal=
A pile driver is a heavy-duty tool used to drive piles into soil to build piers, bridges, cofferdams, and other "pole" supported structures, and patterns of pilings as part of permanent deep foundations for buildings or other structures. Pilings may be made of wood, solid steel, or tubular steel (often later filled with concrete), and may be driven entirely underwater/underground, or remain partially aboveground as elements of a finished structure.
The term "pile driver" is also used to describe members of the construction crew associated with the task,[1] also colloquially known as "pile bucks".[2]
The most common form of pile driver uses a heavy weight situated between vertical guides placed above a pile. The weight is raised by some motive power (which may include hydraulics, steam, diesel, electrical motor, or manual labor). At its apex the weight is released, impacting the pile and driving it into the ground.[1][3]
There are a number of claims to the invention of the pile driver. A mechanically sound drawing of a pile driver appeared as early as 1475 in Francesco di Giorgio Martini's treatise Trattato di Architectura.[4] Also, several other prominent inventors—James Nasmyth (son of Alexander Nasmyth), who invented a steam-powered pile driver in 1845,[5] watchmaker James Valoué,[6] Count Giovan Battista Gazzola,[7] and Leonardo da Vinci[8]—have all been credited with inventing the device. However, there is evidence that a comparable device was used in the construction of Crannogs at Oakbank and Loch Tay in Scotland as early as 5000 years ago.[9] In 1801 John Rennie came up with a steam pile driver in Britain.[10] Otis Tufts is credited with inventing the steam pile driver in the United States.[11]
Ancient pile driving equipment used human or animal labor to lift weights, usually by means of pulleys, then dropping the weight onto the upper end of the pile. Modern piledriving equipment variously uses hydraulics, steam, diesel, or electric power to raise the weight and guide the pile.
A modern diesel pile hammer is a large two-stroke diesel engine. The weight is the piston, and the apparatus which connects to the top of the pile is the cylinder. Piledriving is started by raising the weight; usually a cable from the crane holding the pile driver — This draws air into the cylinder. Diesel fuel is injected into the cylinder. The weight is dropped, using a quick-release. The weight of the piston compresses the air/fuel mixture, heating it to the ignition point of diesel fuel. The mixture ignites, transferring the energy of the falling weight to the pile head, and driving the weight up. The rising weight draws in fresh air, and the cycle continues until the fuel is depleted or is halted by the crew.[12]
From an army manual on pile driving hammers: The initial start-up of the hammer requires that the piston (ram) be raised to a point where the trip automatically releases the piston, allowing it to fall. As the piston falls, it activates the fuel pump, which discharges a metered amount of fuel into the ball pan of the impact block. The falling piston blocks the exhaust ports, and compression of fuel trapped in the cylinder begins. The compressed air exerts a pre-load force to hold the impact block firmly against the drive cap and pile. At the bottom of the compression stroke, the piston strikes the impact block, atomizing the fuel and starting the pile on its downward movement. In the instant after the piston strikes, the atomized fuel ignites, and the resulting explosion exerts a greater force on the already moving pile, driving it further into the ground. The reaction of the explosion rebounding from the resistance of the pile drives the piston upward. As the piston rises, the exhaust ports open, releasing the exhaust gases to the atmosphere. After the piston stops its upward movement, it again falls by gravity to start another cycle.
Vertical travel leads come in two main forms: spud and box lead types. Box leads are very common in the Southern United States and spud leads are common in the Northern United States, Canada and Europe.
A hydraulic hammer is a modern type of piling hammer used instead of diesel and air hammers for driving steel pipe, precast concrete, and timber piles. Hydraulic hammers are more environmentally acceptable than older, less efficient hammers as they generate less noise and pollutants. In many cases the dominant noise is caused by the impact of the hammer on the pile, or the impacts between components of the hammer, so that the resulting noise level can be similar to diesel hammers.[12]
Hydraulic press-in equipment installs piles using hydraulic rams to press piles into the ground. This system is preferred where vibration is a concern. There are press attachments that can adapt to conventional pile driving rigs to press 2 pairs of sheet piles simultaneously. Other types of press equipment sit atop existing sheet piles and grip previously driven piles. This system allows for greater press-in and extraction force to be used since more reaction force is developed.[12] The reaction-based machines operate at only 69 dB at 23 ft allowing for installation and extraction of piles in close proximity to sensitive areas where traditional methods may threaten the stability of existing structures.
Such equipment and methods are specified in portions of the internal drainage system in the New Orleans area after Hurricane Katrina, as well as projects where noise, vibration and access are a concern.
Vibratory pile hammers contain a system of counter-rotating eccentric weights, powered by hydraulic motors, and designed so that horizontal vibrations cancel out, while vertical vibrations are transmitted into the pile. The pile driving machine positioned over the pile with an excavator or crane, and is fastened to the pile by a clamp and/or bolts. Vibratory hammers can drive or extract a pile. Extraction is commonly used to recover steel I-beams used in temporary foundation shoring. Hydraulic fluid is supplied to the driver by a diesel engine-powered pump mounted in a trailer or van, and connected to the driver head via hoses. When the pile driver is connected to a dragline excavator, it is powered by the excavator's diesel engine. Vibratory pile drivers are often chosen to mitigate noise, as when the construction is near residences or office buildings, or when there is insufficient vertical clearance to permit use of a conventional pile hammer (for example when retrofitting additional piles to a bridge column or abutment footing). Hammers are available with several different vibration rates, ranging from 1200 vibrations per minute to 2400 VPM. The vibration rate chosen is influenced by soil conditions and other factors, such as power requirements and equipment cost.
A piling rig is a large track-mounted drill used in foundation projects which require drilling into sandy soil, clay, silty clay, and similar environments. Such rigs are similar in function to oil drilling rigs, and can be equipped with a short screw (for dry soil), rotary bucket (for wet soil) or core drill (for rock), along with other options. Expressways, bridges, industrial and civil buildings, diaphragm walls, water conservancy projects, slope protection, and seismic retrofitting are all projects which may require piling rigs.
The underwater sound pressure caused by pile-driving may be deleterious to nearby fish.[13][14] State and local regulatory agencies manage environment issues associated with pile-driving.[15] Mitigation methods include bubble curtains, balloons, internal combustion water hammers.[16]
A shallow foundation is a type of building foundation that transfers structural load to the Earth very near to the surface, rather than to a subsurface layer or a range of depths, as does a deep foundation. Customarily, a shallow foundation is considered as such when the width of the entire foundation is greater than its depth.[1] In comparison to deep foundations, shallow foundations are less technical, thus making them more economical and the most widely used for relatively light structures.
Footings are always wider than the members that they support. Structural loads from a column or wall are usually greater than 1,000 kPa, while the soil's bearing capacity is commonly less than that (typically less than 400 kPa). By possessing a larger bearing area, the foundation distributes the pressure to the soil, decreasing the bearing pressure to within allowable values.[2] A structure is not limited to one footing. Multiple types of footings may be used in a construction project.
Also called strip footing, a wall footing is a continuous strip that supports structural and non-structural load-bearing walls. Found directly under the wall, Its width is commonly 2-3 times wider than the wall above it.[3]
Also called single-column footing, an isolated footing is a square, rectangular, or circular slab that supports the structural members individually. Generally, each column is set on an individual footing to transmit and distribute the load of the structure to the soil underneath. Sometimes, an isolated footing can be sloped or stepped at the base to spread greater loads. This type of footing is used when the structural load is relatively low, columns are widely spaced, and the soil's bearing capacity is adequate at a shallow depth.
When more than one column shares the same footing, it is called a combined footing. A combined footing is typically utilized when the spacing of the columns is too restricted such that if isolated footing were used, they would overlap one another. Also, when property lines make isolated footings eccentrically loaded, combined footings are preferred.
When the load among the columns is equal, the combined footing may be rectangular. Conversely, when the load among the columns is unequal, the combined footing should be trapezoidal.
A strap footing connects individual columns with the use of a strap beam. The general purpose of a strap footing is alike to those of a combined footing, where the spacing is possibly limited and/or the columns are adjacent to the property lines.
Also called raft foundation, a mat foundation is a single continuous slab that covers the entirety of the base of a building. Mat foundations support all the loads of the structure and transmit them to the ground evenly. Soil conditions may prevent other footings from being used. Since this type of foundation distributes the load coming from the building uniformly over a considerably large area, it is favored when individual footings are unfeasible due to the low bearing capacity of the soil.
Slab-on-grade or floating slab foundations are a structural engineering practice whereby the reinforced concrete slab that is to serve as the foundation for the structure is formed from formwork set into the ground. The concrete is then poured into the formwork, leaving no space between the ground and the structure. This type of construction is most often seen in warmer climates, where ground freezing and thawing is less of a concern and where there is no need for heat ducting underneath the floor. Frost Protected Shallow Foundations (or FPSF) which are used in areas of potential frost heave, are a form of slab-on-grade foundation.[4]
Remodeling or extending such a structure may be more difficult. Over the long term, ground settling (or subsidence) may be a problem, as a slab foundation cannot be readily jacked up to compensate; proper soil compaction prior to pour can minimize this. The slab can be decoupled from ground temperatures by insulation, with the concrete poured directly over insulation (for example, extruded polystyrene foam panels), or heating provisions (such as hydronic heating) can be built into the slab.
Slab-on-grade foundations should not be used in areas with expansive clay soil. While elevated structural slabs actually perform better on expansive clays, it is generally accepted by the engineering community that slab-on-grade foundations offer the greatest cost-to-performance ratio for tract homes. Elevated structural slabs are generally only found on custom homes or homes with basements.
Copper piping, commonly used to carry natural gas and water, reacts with concrete over a long period, slowly degrading until the pipe fails. This can lead to what is commonly referred to as slab leaks. These occur when pipes begin to leak from within the slab. Signs of a slab leak range from unexplained dampened carpet spots, to drops in water pressure and wet discoloration on exterior foundation walls.[5] Copper pipes must be lagged (that is, insulated) or run through a conduit or plumbed into the building above the slab. Electrical conduits through the slab must be water-tight, as they extend below ground level and can potentially expose wiring to groundwater.
cite book
Waterproofing is the process of making an item, person or framework water-proof or waterproof so that it continues to be fairly unaffected by water or stands up to the access of water under defined problems. Such items may be used in damp settings or underwater to specified depths. Water-resistant and water resistant usually refer to resistance to infiltration of water in its liquid state and potentially under stress, whereas damp proof refers to resistance to humidity or wetness. Permeation of water vapour via a material or structure is reported as a dampness vapor transmission rate (MVTR). The hulls of boats and ships were as soon as waterproofed by using tar or pitch. Modern items may be waterproofed by applying water-repellent finishings or by securing joints with gaskets or o-rings. Waterproofing is utilized in reference to developing frameworks (such as cellars, decks, or damp areas), watercraft, canvas, apparel (raincoats or waders), digital tools and paper product packaging (such as cartons for liquids).
https://www.google.com/maps/place//@42.099726510371,-88.160216286386,25.2z/data=!4m6!3m5!1sNone!8m2!3d42.0637725!4d-88.1396465!16s%2F
https://www.google.com/maps/place//@42.04557661708,-88.091584072283,25.2z/data=!4m6!3m5!1sNone!8m2!3d42.0637725!4d-88.1396465!16s%2F
https://www.google.com/maps/place//@42.040913746131,-88.212085693635,25.2z/data=!4m6!3m5!1sNone!8m2!3d42.0637725!4d-88.1396465!16s%2F
https://www.google.com/maps/place//@42.097668549176,-88.210034944359,25.2z/data=!4m6!3m5!1sNone!8m2!3d42.0637725!4d-88.1396465!16s%2F
https://www.google.com/maps/place//@42.017376287552,-88.121739985479,25.2z/data=!4m6!3m5!1sNone!8m2!3d42.0637725!4d-88.1396465!16s%2F
https://www.google.com/maps/place//@42.086153671225,-88.19640031169,25.2z/data=!4m6!3m5!1sNone!8m2!3d42.0637725!4d-88.1396465!16s%2F
https://www.google.com/maps/place//@42.117615793221,-88.149848108296,25.2z/data=!4m6!3m5!1sNone!8m2!3d42.0637725!4d-88.1396465!16s%2F
https://www.google.com/maps/place//@42.092671011935,-88.097873714537,25.2z/data=!4m6!3m5!1sNone!8m2!3d42.0637725!4d-88.1396465!16s%2F
https://www.google.com/maps/place//@42.051414239752,-88.061514599868,25.2z/data=!4m6!3m5!1sNone!8m2!3d42.0637725!4d-88.1396465!16s%2F
https://www.google.com/maps/place//@42.084324223519,-88.137710099374,25.2z/data=!4m6!3m5!1sNone!8m2!3d42.0637725!4d-88.1396465!16s%2F
https://www.google.com/maps/dir/?api=1&origin=42.028247351896,-88.203081257419&destination=%2C+2124+Stonington+Ave%2C+Hoffman+Estates%2C+IL+60169%2C+USA&destination_place_id=ChIJ-wSxDtinD4gRiv4kY3RRh9U&travelmode=transit&query=foundation+crack+repair+Chicago
https://www.google.com/maps/dir/?api=1&origin=42.050000207566,-88.075050390596&destination=%2C+2124+Stonington+Ave%2C+Hoffman+Estates%2C+IL+60169%2C+USA&destination_place_id=ChIJ-wSxDtinD4gRiv4kY3RRh9U&travelmode=transit&query=helical+pier+installation+Schaumburg
https://www.google.com/maps/dir/?api=1&origin=42.065272207861,-88.10093293524&destination=%2C+2124+Stonington+Ave%2C+Hoffman+Estates%2C+IL+60169%2C+USA&destination_place_id=ChIJ-wSxDtinD4gRiv4kY3RRh9U&travelmode=driving&query=house+leveling+service+Des+Plaines
https://www.google.com/maps/dir/?api=1&origin=42.097668549176,-88.210034944359&destination=%2C+2124+Stonington+Ave%2C+Hoffman+Estates%2C+IL+60169%2C+USA&destination_place_id=ChIJ-wSxDtinD4gRiv4kY3RRh9U&travelmode=transit&query=foundation+pier+replacement+Lake+Zurich
https://www.google.com/maps/dir/?api=1&origin=42.111332166598,-88.176665125485&destination=%2C+2124+Stonington+Ave%2C+Hoffman+Estates%2C+IL+60169%2C+USA&destination_place_id=ChIJ-wSxDtinD4gRiv4kY3RRh9U&travelmode=transit&query=home+foundation+leveling+Aurora+IL
https://www.google.com/maps/dir/?api=1&origin=42.089226014242,-88.21676191398&destination=%2C+2124+Stonington+Ave%2C+Hoffman+Estates%2C+IL+60169%2C+USA&destination_place_id=ChIJ-wSxDtinD4gRiv4kY3RRh9U&travelmode=driving&query=crawl+space+underpinning+Elgin
https://www.google.com/maps/dir/?api=1&origin=42.03366690332,-88.101857090718&destination=%2C+2124+Stonington+Ave%2C+Hoffman+Estates%2C+IL+60169%2C+USA&destination_place_id=ChIJ-wSxDtinD4gRiv4kY3RRh9U&travelmode=transit&query=pier+and+beam+repair+Downers+Grove
https://www.google.com/maps/dir/?api=1&origin=42.065087517466,-88.15992051705&destination=%2C+2124+Stonington+Ave%2C+Hoffman+Estates%2C+IL+60169%2C+USA&destination_place_id=ChIJ-wSxDtinD4gRiv4kY3RRh9U&travelmode=transit&query=home+foundation+leveling+Aurora+IL
https://www.google.com/maps/dir/?api=1&origin=42.017845685371,-88.11591807218&destination=%2C+2124+Stonington+Ave%2C+Hoffman+Estates%2C+IL+60169%2C+USA&destination_place_id=ChIJ-wSxDtinD4gRiv4kY3RRh9U&travelmode=transit&query=slab+foundation+lifting+Hoffman+Estates
https://www.google.com/maps/dir/?api=1&origin=42.037946645157,-88.202336957238&destination=%2C+2124+Stonington+Ave%2C+Hoffman+Estates%2C+IL+60169%2C+USA&destination_place_id=ChIJ-wSxDtinD4gRiv4kY3RRh9U&travelmode=transit&query=structural+wall+bracing+Arlington+Heights